Экзаменационные вопросы по геометрии за курс 9 класса

Печать
(76 голосов)
Оглавление
Экзаменационные вопросы по геометрии за курс 9 класса
Страница 2
Страница 3
Страница 4
Страница 5
Страница 6
Страница 7
Страница 8
Страница 9
Страница 10
Страница 11
Страница 12
Страница 13
Страница 14
Страница 15
Страница 16
Страница 17
Страница 18
Страница 19
Страница 20
Страница 21
Страница 22
Страница 23
Страница 24
Страница 25
Страница 26
Страница 27
Страница 28
Страница 29
Страница 30
Страница 31
Страница 32
Страница 33
Страница 34
Страница 35
Страница 36
Страница 37
Страница 38
Страница 39
Страница 40
Страница 41
Страница 42
Страница 43
Страница 44
Страница 45
Страница 46
Страница 47
Страница 48
Страница 49
Страница 50
Страница 51
Страница 52
Страница 53
Страница 54
Страница 55
Страница 56
Страница 57
Страница 58
Страница 59
10. Преобразование плоскости (определение, отображение <на>, отображение <в>, компози-ция, взаимно однозначное соответствие, обратное, обратимое отображение). Движение и его свойства.

Пусть задана фигура F и каждой точке фигуры F сопоставлена единственная точка плоскости. Множество точек, сопоставленных точкам фигуры F, является некоторой фигурой F1. В таком случае говорят, что фигура F преобразована в F1 и фигура F1 получается преобразованием из фигуры F.

 
 
 

 


Также можно сказать, что:

F1 - образ фигуры F

F - прообраз фигуры F1

Если A1 - точка фигуры F1, соответствующая точке A фигуры F, то:

A1 - образ точки A

A - прообраз точки A1

Записать можно вот таким образом:

f(F) = F1

f(A) = A1

Пусть X, Y - два непустых множества. Если указано правило, по которому каждому элементу из множества X ставится в соответствие ровно один элемент из множества Y, то говорят, что задано отображение X в Y.

Пусть задано отображение X в Y. Если при этом для каждого элемента y из множества Y имеется хотя бы один прообраз, то говорят, что задано отображение X на Y.

 
 
 

 


f(AB) = A1B1 Î a

Рассмотрим  проекцию отрезка AB на прямую a. Это отрезок A1B1. В таком случае получаем отображение отрезка AB на отрезке A1B1, но отображение отрезка AB в прямую a, т. к. точке, не принадлежащей отрезку, но принадлежащей прямой a, нет прообраза.

Если любым двум элементам из множества X соответствует различные элементы из множества Y, то отображение X на Y называют взаимно однозначными.

Рассмотрим преобразование плоскости, при котором AA1 (f(A) = A1).

Взаимно однозначное соответствие, при котором A1A, называется обратным. При этом f  -1(A1) = A.

Преобразование, для которого существует обратное, называется обратимым.

Результат последовательного выполнения нескольких преобразований называется композицией.

 
 
 

 


gf(F) = F2

g(f(F)) = F2



 
Обсуждение (0 комментариев)


Обсудить на форуме. (0 комментариев)

Добавить комментарий


Защитный код
Обновить

Экзаменационные вопросы по геометрии за курс 8 класса »